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Abstract
In this paper we formalize the uncertainty about the persistence of cost-push shocks using

an open economy optimal control model with Markov regime-switching and robust control.
The latter is used in only one of the regimes producing relatively more persistent cost-push
shocks in that regime. Conditional on being in the regime with relatively less persistence, we
obtain two main results: a) underestimating the probability of switching to the regime with
relatively more persistent cost-push shocks causes higher welfare losses than its overestima-
tion; and b) the welfare losses associated with either underestimation or overestimation of
such probability increase with the size of the penalty on inflation deviations from its target.
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Resumen
En este documento formalizamos la incertidumbre de la persistencia de choques cost-

push al usar un modelo de control óptimo para una economı́a abierta con transiciones de
Markov y control robusto. Este último es usado únicamente en uno de los reǵımenes para
producir choques cost-push más persistentes en ese régimen. Condicionando a estar en el
régimen con relativamente menor persistencia, obtenemos dos resultados principales: a) la
subestimación de la probabilidad de transitar al régimen con choques cost-push relativamente
más persistentes ocasiona pérdidas de bienestar mayores que su sobreestimación; y b) las
pérdidas de bienestar asociadas ya sea con la subestimación o la sobreestimación de tal
probabilidad se incrementan con el tamaño del castigo sobre las desviaciones de la inflación
de su objetivo.
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1. Introduction 

One of the main concerns of monetary policy is the uncertainty about the persistence of cost-push 

shocks. For instance, in 2004 a surge in the global demand of commodities (or primary goods) 

increased their international price, prompting a cautious behavior of many central banks in the face 

of inflationary pressures throughout the year. Figure 1 shows the increase in commodity prices 

during 2004. In the Mexican case, the cautious approach to price shocks by the monetary authority 

was due to several factors. First, the direct impact of higher commodity prices on inflation. Second, 

the uncertainty about the evolution of commodity prices in the future. Third, the possibility of 

second round effects of the aforementioned shocks on the process of price formation. Finally, the 

possibility of undesirable effects on inflation derived from the combination of continuing increases 

in commodity prices and the recovery experienced by the global economy.1 

Commodity Prices (2000=100) 
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Figure 1. World Commodity Prices 2000-2004 

                                                      
1
  The possibility of persistent effects of the shocks observed in 2004 was highlighted in the Summary of 

the Quarterly Inflation Report October-December 2004 published by Banco de México in January 2005. 
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In this paper, we develop a formal framework to obtain the optimal policy of an inflation-

targeting monetary authority in the presence of uncertainty about the persistence of cost-push 

shocks.2 We allow the economy to randomly alternate between two regimes that only differ in the 

degree of persistence of cost-push shocks. The possibility of sudden changes in the persistence of 

cost-push shocks is given by introducing robust control in only one of the regimes of the Markov 

chain process. Following Hansen and Sargent (2003), robust control in one regime is specified by 

introducing a set of additive distortions to the cost-push process which generates more persistent 

shocks than the non-robust regime. This combination of Markov regime-switching and robust 

control is applied to an open economy model for the Mexican economy. We obtain the welfare 

losses conditional on being in the regime with relatively less persistent shocks. In the evaluation of 

the monetary policy rule, we compare recklessness and caution losses. Recklessness losses occur 

when the monetary authority underestimates the probability of switching to the regime with 

relatively more persistent shocks. On the other hand, cautionary losses take place when the 

monetary authority overestimates the aforementioned probability. 

Our investigation suggests that monetary authorities in this environment should err on the 

side of caution. We find that a cautious monetary authority delivers lower welfare losses than a 

reckless one when it is possible to switch to the regime with relatively more persistent cost-push 

shocks. Moreover, we show that both recklessness and caution losses increase with the penalty on 

inflation deviations from its target.  

Previous literature on robust control finds that optimal monetary policy generally 

commands a stronger response of the interest rate to fluctuations in target variables, such as 

inflation and the output gap when comparing to the case of no uncertainty. In particular, Becker et 

al. (1994) produce an algorithm for robust optimal decisions with stochastic nonlinear models 

                                                      
2  For this paper purposes, the underlying factors affecting this type of uncertainty are indistinguishable. 
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applied to the United Kingdom. Tetlow and von zur Muehlen (2001a) explore two types of 

Knightian model uncertainty to explain the difference between estimated interest rate rules and 

optimal feedback descriptions of monetary policy.3 Tetlow and von zur Muehlen (2001b) deal with 

robust control by using three different ways of modeling misspecification in order to explain the 

inflationary phenomena of the 1970s in the United States. Rustem et al. (2001) compare policy 

recommendations for worst-case scenarios with those of the robust control approach in inflation 

targeting regimes. Stock (1999), Onatski and Stock (2002), and Giannoni (2002) study a type of 

uncertainty reflected on the values of coefficients of the linear equations of a structural model. 

Walsh (2004) concludes that the problems arising from unexpected shocks become more serious if 

the shocks last longer. Consequently, central bankers who desire a robust policy will react to all 

inflation shocks as if they were going to be more persistent. Markov chain processes in optimal 

control problems have been the subject of recent interest. Zampolli (2006) combines optimal control 

and Markov regime-switching and finds more cautious optimal monetary policies in the presence of 

abrupt changes in one multiplicative parameter. Blake and Zampolli (2004) extend those results to 

find the optimal time-consistent monetary policy for models with forward-looking variables. 

To the authors´ knowledge, there have not been previous studies combining Markov 

regime-switching and robust control to obtain the optimal policy in the presence of uncertainty 

about the persistence of cost-push shocks. Conditional on being in the regime with relatively less 

persistence, we find two main results: 1) underestimating the probability of switching to the regime 

with relatively more persistent cost-push shocks causes higher welfare losses than its 

overestimation; and 2) the losses associated with the underestimation and overestimation of such 

probability increase with the penalty on inflation deviations from its target. These results argue in 

                                                      
3  These authors talk about the notion of Knightian uncertainty when the best guess of the true model is 

flawed in a serious but unspecificable way.  
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favor of caution over recklessness when it is possible to switch to the regime with relatively more 

persistent cost-push shocks.  

The remainder of this paper is organized as follows. In Section 2, we set up the optimal 

control problem with unstructured regime shifts. Section 3 shows the procedure to compute the 

optimal solution to the problem with Markov regime-switching and robust control. Section 4 

presents the open economy model for the Mexican economy. Section 5 describes the procedure to 

find a reasonable level of robustness. In Section 6, we obtain the recklessness and caution losses for 

different preference parameters of the monetary authority. Finally, Section 7 presents our 

conclusions. 

2. Optimal control problem with unstructured regime shifts 

In this model, the policy maker is a monetary authority with inflation targeting. Moreover, at any 

given point the economy can alternate between two regimes. The probability of shifting regimes is 

given by a first order Markov chain process. In regime 1 the policy maker is uncertain about her 

cost-push process and cannot assign probabilities to alternative sets of cost-push specifications. In 

order to deal with Knightian model uncertainty, the policy maker uses robust control and introduces 

an autocorrelated distortion in the cost-push process in the form of a new control variable, 1tω + . 

The value of 1tω +  depends on the next period regime, and ultimately on the history of state 

variables.4 This produces a key difference between the two regimes: cost-push shocks are more 

persistent in regime 1 than in regime 2. However, the distortion needs to be bounded or it will 

produce infinite damage to the policy maker. The bound on 1tω +  is chosen outside the model and it 

is inversely associated with the “free” parameter of robust control, θ . An increase in θ  decreases 
                                                      
4
  Since the distortion 1tω +  is turned off in regime 2, the cost-push process does not become relatively 

more persistent in such regime –i.e. there is no Knightian model uncertainty in regime 2.  
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the degree of the Knightian model uncertainty and the persistence of the cost-push shock in regime 

1. When θ →∞  the Knightian model uncertainty disappears and the cost-push shocks persistence 

is the same in both regimes. Moreover, given that in regime 1 the policy maker faces Knightian 

model uncertainty, the regime shift is unstructured – i.e. there is no change in a particular parameter 

when there is regime-switching.  

The policy maker’s problem is an infinite horizon Quadratic Linear Problem (QLP) that 

consists of choosing the nominal interest rate to minimize the nominal interest rate variability and 

the deviations of the inflation and output gap variables from their respective targets. The quadratic 

loss function can be expressed as follows: 

* 2 2 2
1

0
(1 ) 144 ( ) (1 ) ( )k

t t t k t k t k t k
k

L E x i iβ φ α π π α φ
∞

+ + + − +
=

⎡ ⎤⎡ ⎤= − − + − + −⎣ ⎦⎣ ⎦∑
             (1) 

Moreover, the policy maker introduces a fictitious “evil” agent who tries to maximize such 

deviations in regime 1 by making the cost-push process relatively more persistent. In addition, the 

policy maker faces a set of constraints and regime switching. The unstructured regime shifts are 

derived from changing the value of the robust control “free” parameter. Formally, the robust control 

problem consists of choosing *
itu  to extremize the quadratic criterion function.5 Since the Riccati 

equations for the QLP result from first-order conditions, and the first-order conditions for 

extremizing a quadratic criterion function match those of an ordinary (non-robust) QLP with two 

controls (see Hansen and Sargent, 2003, pp. 29-30), the optimal control problem with unstructured 

regime shifts can be written as follows: 

( )  ~~~maxmin 1
'***'''

⎥⎦
⎤

⎢⎣
⎡ ++

′
++=+ ++++ ittit dd 11t1it11tititititit1t1tit1t

u
1tit1t xVxEuRuuU2xxQxxVx

*
it

β
       (2) 

                                                      
5
  Extremization refers to minimizing the criterion function with respect to the original control variables 

and maximizing it with respect to 1kω +  which is a function of the next period’s regime. 
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subject to the system equations6 

2 1,   and  2  1,  given,     , ~~
                      

1
* ==++= ++ j i t 1t1itjt1tjt11t xεCuBxAx                       (3) 

where 1tx  is n1 x 1 vector of predetermined state variables for period t; β  is the discount factor (0 

<  β  ≤   1); itV  is the value function in the current regime i for period t. The new control *
itu  is a 

(m+n1) x 1 vector of control variables and the model distortions in regime i for period t of the 

following form: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

+ 1) x (n   

1) x (m       *

11it

it
it ω

u
u

                       (4) 

where 1) x (n   11itω +  is a (n1 x 1) vector of model distortions for period t that depend on the next 

period’s regime. In addition the new matrices in the objective function and in the system of 

equations are given by the following equations: 

it22it21itit1211it DQ'D  Q'D  DQ Q Q +++=~
                     (5) 

it12itit22ititit G'U  UG  GQ'G  R R +++=~
                     (6) 

2it1it22itit12it U'D  U  GQ'D  GQ U +++=~
                     (7) 

jt1211jt D A  A A +=~
                        (8) 

jt121jt G A B  B +=~
                        (9) 

The regimes are defined as follows: 

⎩
⎨
⎧

=+ persistent  less relatively are shockspush -cost if   2
persistent more relatively are shockspush -cost if1

1

   
tr

 

                                                      
6
  Some of the auxiliary matrices are defined in Appendix A. 
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The regime 1+tr   is assumed to follow a fist order Markov chain process with the following 

transition matrix: 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

qq
pp

P
1

1

                                   (10) 

where { }1|2Pr 1 === + tt rrp  and { }2|1Pr 1 === + tt rrq  ∀ t =1,2,3… 

Thus, p is the probability that the economy alternates from the relatively more persistent to 

the relatively less persistent cost-push shock process and q represents exactly the opposite type of 

probability. These probabilities represent the uncertainty about the type of regime in the next 

period. We assume that the regime of the economy 1+tr  is revealed only at the end of period t, after 

the policy action has been decided. That is, when the policy maker chooses the policy rule, tr  is 

known but 1+tr  is still uncertain. 

3. Optimal solution with unstructured regime shifts  

Solving the optimal control problem with unstructured regime shifts is equivalent to finding a 

contingent policy rule *
itu . By adapting the Giordani and Söderlind’s (2004) discretion solution to 

the presence of Markov regime-switching given by Equations (2)-(4) and (10), we obtain the 

following solution:  

1titit xFu ~* −=                                                                                                                           (11) 

where 

( )
( )

1

                            1  

β p β p

β p p

= + − +

+ − +
1t 1t 1t 1t 1t 2t 2t 2t

1t 1t 1t 1t 2t 2t 2t

F   inv(R B ' V B B ' V B )

 * (U '  (B ' V A B 'V A ))

% % % % % % % %

% %% % % % %
                                          (12) 

( )
( )

1

                             1

β q β q

β q q

= + + −

+ + −
2t 2t 1t 1t 1t 2t 2t 2t

2t 1t 1t 1t 2t 2t 2t

F   inv(R B ' V B B ' V B )

 * (U '  (B ' V A B 'V A ))

% % % % % % % %

% %% % % % %
                                            (13) 



 8

combining Equations (11)-(13) with Equation (3), we obtain 

1tit2t xKx = , with  itititit FGDK ~−=                                                                                            (14) 

Hence, the value functions for regime 1 and 2 are given by Equations (15) and (16), 

respectively: 

( )            1β p p

= +

+ − +
1t 1t 1t 1t 1t 1t 1t 1t 1t

1t 1t 1t 1t 1t 1t 1t 2t 2t 2t 2t 2t 2t 2t

V   Q  - U F  - F 'U '  F 'R F  

 ((A - B F )' V (A - B F ) (A - B F )'V (A - B F ))

%% % % % % % % %

% % % %% % % % % % % % % %
        (15) 

( )            1β q q

= +

+ + −
2t 2t 2t 2t 2t 2t 2t 2t 2t

1t 1t 1t 1t 1t 1t 1t 2t 2t 2t 2t 2t 2t 2t

V   Q  - U F  - F 'U '  F 'R F  

 ((A - B F )' V (A - B F ) (A - B F )'V (A - B F ))

%% % % % % % % %

% % % %% % % % % % % % % %
          (16) 

The solution to the algorithm to Equations (11)-(16) is shown in Appendix A. Such solution 

incorporate the standard solutions when we set  0p q= = . In this special case, we would obtain 

the solution to two optimal control problems, one corresponding to regime 1 and the other to regime 

2 under the assumption that each regime will be there permanently.   

4. Unstructured regime shifts in an open economy model 

We used the open economy model for the Mexican economy in Roldán-Peña (2005). This model 

takes into account the dynamic homogeneity property as well as some parameters restrictions which 

reflect some assumptions about long-term values for the real interest rate and the real exchange 

rate.7 The endogenous variables are the output gap ( tx ), core inflation ( c
tπ ), and the real exchange 

rate ( ttcr ). Headline inflation and the change in the nominal exchange rate are denoted by tπ  and 

ttcn∆ , respectively. The equations for the endogenous variables, headline inflation and the 

purchasing power parity are shown below. The superscript “US” in a variable denotes its value for 

the United States which is considered exogenous. 

                                                      
7  For estimation methods and samples used see Roldán-Peña (2005).  
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 { } tt
US
tttttt ugtobxbrbxEbxbbx +∆+++++= −−−+− 26141312110                                                  (17) 

{ } ( ) tt
US
ttt

c
tt

c
t gsalatcnaxaEa +∆++∆++= −−−+ 14223211 πππ                                                   (18) 

{ } ( ) tt
US
tttttt vrrtcrEctcrctcrctcr +⎟

⎠

⎞
⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛+++= +−− 1200

1
124110

                                                    (19) 

nc
tnc

c
tct ww πππ +=                      (20) 

tt
US
tt tcrtcn ππ +∆=+∆                                                                                                                 (21) 

where tg , tu  and tv  represent the error terms of the core inflation, output gap and real exchange 

rate specifications, respectively. 8 They are defined as autoregressive AR(1) processes as follows: 

ttgt ggg ˆ1 += −ρ                                                                                                                             (22) 

ttut uuu ˆ1 += −ρ                                                                                                                               (23) 

ttvt vvv ˆ1 += −ρ                                                                                                                                (24) 

The exogenous variables are the non-core inflation ( nc
tπ ), the change in wages ( tsal∆ ) and 

the change in government spending ( tgto∆ ), given by the following equations: 

t
nc
t

nc
t wdd ++= −110 ππ                                                                                                                   (25) 

ttt saleesal χ+∆+=∆ −110                                                                                                            (26) 

ttt ygtoffgto +∆+=∆ −110                                                                                                           (27) 

                                                      
8  The distortion 1tω +  affects tg  in a way that makes it relatively more persistent. However, since this 

distortion is Knightian in nature, it does not affect the autoregressive parameter of the cost-push process.    
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where  tw , tχ  and ty  represent the error terms of the non-core inflation, change in wages and 

change in government spending specifications, respectively. They are assumed to follow an 

autoregressive AR(1) process: 

ttwt www ˆ1 += −ρ .                                                                                                                          (28) 

ttt χχρχ χ ˆ1 += −                                                                                                                            (29) 

ttyt yyy ˆ1 += −ρ                                                                                                                              (30) 

The external exogenous variables (US inflation, output gap and interest rate, defined as 

US
tπ , US

tx   and US
ti  respectively) are determined as a vector autoregression VAR(2): 

t
US
t

US
t

US
t

US
t

US
t

US
t

US
t ixx δπααααπαπααπ +++++++= −−−−−− 2615241322110                                       (31) 

t
US
t

US
t

US
t

US
t

US
t

US
t

US
t ixxx επββββπβπββ +++++++= −−−−−− 2615241322110                                        (32) 

t
US
t

US
t

US
t

US
t

US
t

US
t

US
t ixxi ηπγγγγπγπγγ +++++++= −−−−−− 2615241322110                                            (33) 

where  tδ , tε  and tη  represent the error terms of the US inflation, output gap and interest rate 

specifications, respectively,  and are defined as autoregressive AR(1) processes: 

ttt δδρδ δ
ˆ

1 += − .                                                                                                                            (34) 

ttt εερε ε ˆ1 += −                                                                                                                               (35) 

ttt ηηρη η ˆ1 += −                                                                                                                              (36) 

The state-space representation of the model is: 

{ } ⎥
⎦

⎤
⎢
⎣

⎡
++⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ +

+

+

0
εC

Bu
x
x

A
x

x 1t1
1t

2t

1t

12t

11t

    
   *

tE                                                                                     (37) 

where the vector of predetermined state variables 1tx  is given by the following equation:9 

                                                      
9
  The term cte denotes a constant term.   
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ηεδχ
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1tx

          (38) 

and the vector of non-predetermined state variables 2tx  has the components shown in the following 

equation: 

[ ]tt
c
t tcrx ,,π=2tx                                                                                                                            (39) 

The control variable vector itu  is given by the following: 

⎥
⎦

⎤
⎢
⎣

⎡
=

+ 1) x (n   

*

1

       

1it
it ω

u iti

                                                                                                                         (40) 

5. Selection of the Robust Control ‘Free’ Parameter 

The formulation of robust control used in this paper requires the value of the ‘free’ parameter, θ , to 

come from outside the model. The main purpose is to find reasonable values of the ‘free’ parameter 

to prevent the policy maker from appearing catastrophist instead of cautious. We follow Hansen and 

Sargent (2003) and use the detection error probability theory to choose reasonable values of θ. In 

particular, the objective is to find values of θ for which it is statistically difficult to distinguish 

between the reference and the distorted model. This way, extremely pessimistic cases are ruled out. 

The procedure consists of obtaining two types of probabilities: i) the probability of 

choosing the reference model when the data were generated by the distorted model and ii) the 

probability of choosing the distorted model when the data were generated by the reference model. 

The average of these two probabilities is the probability of making an error in the detection of the 

model – i.e. the detection error probability. Note that if there is no robustness ( )θ →∞  the 

reference and the distorted model are the same and the detection error probability is 0.5. On the 

other hand, when the level of robustness is infinite the detection error probability is zero. Hansen 
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and Sargent (2003) recommend the use of θ  associated with detection error probabilities between 

0.1 and 0.2 which correspond to confidence intervals of 95% and 90%, respectively. 

We use the code of Giordani and Soderlind (2004) to obtain the detection error 

probabilities. The detailed procedure is shown in Appendix B. We solved the problem for a time 

horizon of 150 months (T=150) and 1,000 simulations. Each simulation represents a random draw 

of the additive noise. We decided to use 325θ = , which produces a detection error probability of 

0.2 when α  = 0.5, for a couple of reasons: i) it corresponds to a confidence interval of 90% and ii) 

produces important differences between the policy rules of the reference and distorted model. We 

find that in our model a detection error probability higher than 0.2 does not produce important 

differences between the policy rules.  

In order to observe the implied persistence of 325θ = , we obtain the impulse-response 

functions of the output gap, core inflation and the nominal interest rate to a one-standard-deviation 

cost-push innovation. Figure 2 shows the impulse-response functions for regimes 1 and 2, assuming 

the absence of a Markov chain process between regimes.10 In regime 1, the impulse-response 

functions of the nominal interest rate, core inflation and output gap reveal a relatively more 

persistent cost-push process than in regime 2.  

                                                      
10  Only for the purpose of illustrating the differences between regimes 1 and 2, the initial state variables 

were set to zero.  
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6. Caution versus recklessness losses  

The welfare analysis done in this paper is conditional on being in regime 2 and considers the 

possibility of switching to regime 1. The approach used in this work to deal with the Knightian 

uncertainty faced by the policy maker follows Zampolli (2006). First, we assume that the policy 

maker does not know the true transition probability q , but chooses a transition probability q̂ . 

Second, we fix the transition probability p  or, equivalently, the expected duration of regime 1, 

which is 1
p

 periods. Finally, we obtain the losses associated with all the pairs ˆ( , )q q . Losses are 

normalized with respect to ˆ( , )q q  = (0,0) and are conditional on being in regime 2. For every q, 

minimal losses occur when ˆ .q q=  

In order to evaluate and characterize the optimal policy rule we define recklessness and 

caution losses. Recklessness losses are defined as the welfare losses that occur when the policy 

maker underestimates the probability of switching to regime 1, that is, when ˆ .q q<  On the other 

hand, caution losses are the welfare losses that takes place when the policy maker overestimates the 

probability of switching to regime 1, that is, when ˆ .q q>  Finally, recklessness and caution losses 

are defined as the sum of losses for which q̂ q<  and  q̂ q> , respectively. The following table 

shows the recklessness and caution losses.  
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Table 1. Recklessness and Caution Losses. 

LOSSES

α = 0.1 α = 0.5 α = 0.9

p = 0.25 55.01 55.08 55.44

CAUTION p = 0.5 55.01 55.08 55.72

p = 0.75 55.01 55.09 56.23

p = 0.25 55.27 56.83 65.00

RECKLESSNESS p = 0.5 55.27 56.85 69.29

p = 0.75 55.27 56.87 82.65  

 

Table 1 shows that recklessness losses are always higher than caution losses. This result 

argues in favor of caution over recklessness in the formulation of monetary policy when it is 

possible to transit to the regime with relatively more persistent cost-push shocks. Moreover, both 

types of losses are non decreasing with p  and α . Since the losses are conditional on being in 

regime 2, higher values of p  produce more frequent switches from regime 1 to regime 2. Finally, 

the difference between recklessness and caution losses increases with α .  

Figure 3 shows the losses for all ˆ( , )q q  pairs for different preference parameters and values 

of p .11 The transition probabilities chosen by the policy maker are on the y-axis and the true 

transition probabilities on the x-axis. First, it can be seen that all losses substantially increase when 

1.0q =  regardless of q̂ . This occurs because regime 2, for all 1.0q < , strongly prevails in the 

weighted matrix 2tR  given by Equation (A-24).  

 

                                                      
11  We decided to use the middle value of the range used by Favero and Milani (2005) for the interest rate 

smoothing parameter φ . Other values for this parameter do not change the qualitative results.    
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Chart 1. Optimal losses when alpha = 0.1, phi = 0.2, and p = 0.25
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Chart 4. Optimal losses when alpha = 0.5, phi = 0.2 and p = 0.25
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Chart 7. Optimal losses when alpha = 0.9, phi = 0.2 and p = 0.25
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Chart 2. Optimal losses when alpha = 0.1, phi = 0.2 and p = 0.5
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Chart 5. Optimal losses when alpha = 0.5, phi = 0.2 and p = 0.5
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Chart 8. Optimal losses when alpha = 0.9, phi = 0.2 and p = 0.5
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Chart 3. Optimal losses when alpha = 0.1, phi = 0.2 and p = 0.75
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Chart 6. Optimal losses when alpha = 0.5, phi = 0.2 and p = 0.75
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Chart 9. Optimal losses when alpha = 0.9, phi = 0.2 and p = 0.25
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Figure 3. Losses associated with all the pairs ˆ( , )q q  conditional on being in regime 2 

Second, a horizontal comparison of the charts shows that losses increase with the preference 

parameter α .12 At first, this result seems counterintuitive. However, the detection error 

probabilities obtained for 325θ =  decreased with α . In other words, the “evil” agent is able to do 

more damage when the policy maker increases the penalty on the only variable subject to the 

distortions.13 Moreover, the charts show that recklessness losses substantially increase when the true 

                                                      
12

  It is worth mentioning that the scale of Charts 7-9 is different from the rest’s.  
13  Indeed, the system was no longer controllable for 1.0α =  and some combinations of ˆ( , , )q q p .  
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transition probability 1.0q = . On the other hand, caution losses do not substantially increase when 

the true transition probability 0.0q = .       

7. Conclusions 

In this paper we develop a framework to obtain the optimal policy response in the presence of 

uncertainty about the persistence of cost-push shocks. We allow the economy to randomly alternate 

between two regimes that only differ in the degree of persistence of cost-push shocks. We model the 

possibility of sudden changes in such persistence by using robust control in one of the regimes of 

the Markov chain process. This combination of Markov regime-switching and robust control is 

applied to an open economy model for the Mexican economy. We obtain the welfare losses 

conditional on being in the regime with relatively less persistent shocks. In the evaluation of a 

monetary policy rule, we compare recklessness and caution losses. The former occurs when the 

monetary authority underestimates the probability of switching to the regime with relatively more 

persistent shocks. The latter occurs when the monetary authority overestimates such probability.  

To the authors’ knowledge, no previous study has combined Markov regime-switching and 

robust control. Conditional on being in the regime with relatively less persistence,  such 

combination delivers the following results: 1) underestimating the probability of switching to the 

regime with relatively more persistent cost-push shocks causes more welfare losses than its 

overestimation; and 2) the losses associated with the underestimation and overestimation of such 

probability increase with the penalty on inflation deviations from its target. These results argue in 

favor of caution over recklessness when it is possible to switch to the regime with relatively more 

persistent cost-push shocks. 
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Appendix A 

In this appendix we show the solution algorithm for the optimal policy under discretion with 

Markov regime-switching.   

1 2n n n= +   where 1n and 2n   represent the number of predetermined and non-                        (A-1) 

 predetermined variables, respectively 

32,500con =   con is the value taken by θ  in regime 2              (A-2) 

325=θ                                                                                                                                         (A-3) 

 .β 995850=                                                                                                                                (A-4) 

):,1: A(1 A11 11 nn=                                                                                                                    (A-5) 

):1)(,: A(1 A12 nnn += 11                                                                                                           (A-6) 

 ):,1:1) A(( A21 11 nnn +=                                                                                                          (A-7) 

 ):1)(,:1) A(( A22 nnnn ++= 11                                                                                                (A-8) 

):,1:Q(1  Q11 11 nn=                                                                                                                    (A-9) 

):1)(,:Q(1  Q12 nnn += 11                                                                                                        (A-10) 

):,1:1)Q((  Q21 11 nnn +=                                                                                                         (A-11) 

):1)(,:1)Q((  Q22 nnnn ++= 11                                                                                               (A-12) 

:),:B(1  B1 1n=                                                                                                                           (A-13) 

[ ]=*
1 1 1B B  C                  (A-14) 

:),:1B(  B2 nn += 1                                                                                                                     (A-15) 

:),:U(1  U1 1n=                                                                                                                          (A-16) 

:),:1U(  U2 nn += 1                                                                                                                    (A-17) 

 

The Bellman equation for the optimization can be written 

 

( )  ~~~maxmin 1
'***'''

⎥⎦
⎤

⎢⎣
⎡ ++

′
++=+ ++++ ittit dd 11t1it11tititititit1t1tit1t

u
1tit1t xVxEuRuuU2xxQxxVx

*
it

β         
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.21and21given     , ~~  ..
                      

1
* , j  ,,  its t ==++= ++ 1t1itjt1tjt11t xεCuBxAx                                   (A-18) 

                                                                          

where the matrices with a tilde (~) are defined as 

 

 )A-A(K )AK-(A  D 21111t
-1

121t221t =                                                                                   (A-19) 

)B-B(K)AK-(A  G 211t
-1

121t221t =                                                                                          (A-20) 

                                              (A-21) 

)A-A(K )AK-(A  D 21112t
-1

122t222t =                                                                                      (A-22) 

)B-B(K)AK-(A  G 212t
-1

122t222t =                                                                                         (A-23) 
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1t12111t D A  A A +=~                                                                                                                    (A-25) 

1t1211t G A B  B +=~                                                                                                                      (A-26) 

1t221t211t1t12111t DQ'D  Q'D  DQ Q Q +++=~                                                                           (A-27) 

21t11t221t1t121t U'D  U  GQ'D  GQ U +++=~                                                                            (A-28) 

1t121t1t221t1t1t G'U  UG  GQ'G  R R +++=~                                                                            (A-29) 

2t12112t D A  A A +=~                                                                                                                    (A-30) 

2t1212t G A B  B +=~                                                                                                                      (A-31) 

2t222t212t2t12112t DQ'D  Q'D  DQ Q  Q +++=~                                                                          (A-32) 

22t12t222t2t122t U'D  U  GQ'D  GQ  U +++=~                                                                            (A-33) 

 G'U  U'G  GQ'G  R  R 2t122t2t222t2t2t +++=~                                                                        (A-34) 

 

The first order conditions of (A-18) with respect to *
itu  are 

 

1titit xFu ~* −=                                                                                                                                (A-35)  
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( )  ))AV'BAV'B(  'U( * 

)BV'BBV'BRinv(  F

2t2t2t1t1t1t1t

2t2t2t1t1t1t1t1t
~~~~~1~~

~~~~~1~~~

ppβ
pβpβ

+−+
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( )
( ) ))AV'BAV'B(  'U( * 

)BV'BBV'BRinv(  F

2t2t2t1t1t1t2t

2t2t2t1t1t1t2t2t
~~~1~~~~

~~1~~~~~~

qqβ
qβqβ

−++
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                                                             (A-37) 

 

Combining with (A-18) gives 

 

1tit2t xKx = , with  itititit FGDK ~−=  and                                                                               (A-38) 

 

( ) ))FB-A(V)'FB-A()FB-A(V)'FB-A(( 
 FR'F  'U'F - FU - Q  V

2t2t2t2t2t2t2t1t1t1t1t1t1t1t
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~~~~~~~~~~~1~~~
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( ) ))FB-A(V)'FB-A()FB-A(V)'FB-A(( 
 FR'F  'U'F - FU - Q  V

2t2t2t2t2t2t2t1t1t1t1t1t1t1t
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qqβ −++

+=
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Following Giordani and Söderlind (2004), the algorithm involves iterating until convergence 

(‘backwards in time’) on (A-19)-(A-40). It should be started with a symmetric positive definite 

1itV +  and some 1itK + . If itF~  and itK  converge to constants iF~  and iK , the dynamics of the 

model are 

  

1t11ti11t εCxMx ++ += , where i
*
1i1211i FBKAAM ~−+=  ,                                                   (A-41) 
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Appendix B 
In this appendix we show the detailed procedure to obtain the detection error probability for our 

model. We follow the procedure shown in Hansen and Sargent (2003).  We start by defining the 

reference model as R and the distorted model as D. Model R is represented by the state-space 

representation given by the system equation (37) in the text whereas model D is the distorted 

model. The latter differs from the former because the cost-push process represented by equation 

(22) now has the additive distortion 1tω + . The additive noise is given by the vector 1tε + . The 

likelihood of a sample for model i given that the data is generated by model j is denoted by ijL , 

where  and R, D.j i i≠ =  The likelihood ratio is defined as follows: 

log ii
i

ij

Lr
L

≡                       (B-1) 

The probability of making a mistake in the detection of a model given that the data was generated 

by model i is given by the following equation: 

Pr( | ) ( 0)i ip mistake i frec r= = ≤                  (B-2) 

The probability of making a mistake in the detection of a model is the average of the probability of 

making a mistake when the data was generated either by R or D:  

1( ) ( )
2 R Dp p pθ = +                    (B-3) 

In order to find ( )p θ we need to obtain Rp  and Dp . We first find Rp  using the following five 

steps: 

 

1. Generate a sample of  T = 150 observations for the state variable in the reference model R. That     

     is, we obtain the optimal trajectory for the state variables in the finite horizon model of  T   

     periods.  

2. We use Giordani and Soderlind (2004) specification that assumes the distribution of the additive  

     errors to be ( )N 0,I . In other words the residuals have an identity variance-covariance matrix.        

     We obtain a random draw from this distribution for each simulation. 

3. The new residuals are 1 1 1t t tε ε ω+ + += +(                 (B-4)  

4. The RDL  is calculated using the residuals of the R model minus the distortions: 1 1 1t t tε ε ω+ + += −( .   

    The likelihood equation is the following: 
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( ) ( )
1

1 1 1 1
0

1 1log log 2 ´
2

T

RD t t t t
t

L
T

π ε ω ε ω
−

+ + + +
=

⎧ ⎫= − + − −⎨ ⎬
⎩ ⎭

∑ ( (               (B-5) 

     The distortions are generated using the feedback rule of 1tω + obtained from the D model. 

5. We obtain Rr  and Rp  for  a total of 1,000 simulations for a sample of T = 150. 

 

In order to obtain Dp  we follow a similar procedure as in steps 1 to 5. However, in the first step the 

150 observations of the state variable are generated using the distorted model D. In the second step 

the residuals of the distorted model is assumed to be ( )N 0,I . In the fourth step DRL  is obtained 

using 1 1 1t t tε ε ω+ + += +(  as follows: 

( ) ( )
1

1 1 1 1
0

1 1log log 2 ´
2

T

DR t t t t
t

L
T

π ε ω ε ω
−

+ + + +
=

⎧ ⎫= − + + +⎨ ⎬
⎩ ⎭

∑               (B-6) 

The distortions are generated from the sample of the step 1. Once DRL  is obtained we compute Dr  

and Dp  for the 1,000 simulations and T = 150. 
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